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Outline

« Brief overview of the concept of distributed engine control

« Challenges for modeling distributed systems and creating a versatile
hardware-in-the-loop (HIL) system

« Migration from a centralized to a distributed modeling approach
— Decomposing an engine model
— Modeling of control system components
— Creating a library of re-usable modeling components
— Establishing a template for modeling distributed systems
— Working toward a hardware-in-the-loop (HIL) system

« Simulation Benchmarking and Comparison

« Real-time simulations with our Decentralized Engine Control Simulation
System (DECSS)
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Distributed Control

« Signal processing duties are moved
to smart transducers

« Digital data is transferred between
control components over a digital
network.

Signal susceptibility to noise is reduced

Off-loads some processing from the
control unit

Network connecting the control
components becomes important

« Data loss, time delays, and data
corruption

Makes the control system more modular.
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Working Toward a HIL System for DEC

« Challenges in modeling and simulating distributed systems
— Improved fidelity of the control system
— Numerical precision of the data used in simulations should reflect reality
— Reliable network models are needed
— Simulations should be able to mimic the asynchronous nature of an actual
distributed control system with different sampling periods.
« Challenges in creating a versatile HIL system
— Proprietary models and code must remain protected
— Should not be limited by their model development environment choice

— Common interfaces
— Ability to dependably run in real-time and interface with real hardware.
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Migration from Centralized to Distributed Simulations

« The starting point was based around C-MAPSS40k
— Serves as the engine model for demonstrating DEC

— Use of the system is not limited to C-MAPSS40k or the _
MATLAB/Simulink environment it exists in. Engine
« Unstructured Simulations (Breaking apart C- Model
MAPSS40k)
— Decompose the model and simulate each major
component
* Engine Model (EM) CS:)Olgtterr(;] p User
- Control Model (CM Interface
(CM) Model

» User-Interface (Ul)
— Each model is capable of being hosted on separate
machines
— A pre-defined set of data is transparently shared between
the models
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Migration from Central to Distributed Simulations

Benefits of decomposing the
model

— Modularity — can easily replace
one component with another

— No specific software
requirements

— Proprietary models can be
integrated in a simulation and
remain protected

Issues

— Modularity adds some overhead
that slightly increases execution
time

— Controlling asynchronous
systems is not intuitively obvious

User Interface
(un

input:
environmental
flight profile
health parameters
controller parameters

outputs

Sensors: actuators:
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Control System Platform (CSP)

Engine
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Control System Component Model Development

* Modeling changes occur in the control model which contains:
— Sensor nodes
— Actuator nodes
— Controller
— Controller network

* The basic functions of the control system were identified, modeled, and
entered as library functions

» The library functions simplify the construction of more complex models
and control architectures.

« Of special interest was the sensor and actuator models

— Sensor & actuator models in C-MAPSS40k are first-order transfer functions — not
sufficient for smart nodes in DEC applications
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Control System Component Model Development

Smart Transducer Simulink® Library

e How to model smart nodes?
— |EEE 1451 specification with the following components: | | Tansducers

- actuatorpPlsensor Iinear unit'
 Transducer hardware mapping conversion

actuatorpsensor

» Signal conditioning, conversion, and processin dat |
cogr’nponents ’ " ) val?d?ty
« Network connection interface
 Used Simulink library to build-up smart node — R
mOdels nigglc;rk
 Added smart sensor and actuator models into
the simulation (distributed simulation) Control System Platform

* Included a simple network model

— Randomly delays packets using a lognormal
distribution to determine how much to delay the packet

— Randomly drops a packet using a uniform distribution
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Simulation Progression Summary

Baseline Distributed
C-MAPSS40k C-MAPSS40k
SNl Engine Plant C-MAPSS40k
SYSTEM gMO ol -
Model Controller
1 6 B
Unstructured
2 7 C
C-MAPSS40k C-MAPSS40k switch 3 8 D
Engine Plant Control
Model System 4 9
Opera?or 5 A
Controls, Displays,
Fault Insertion
switch

Operator
Controls, Displays,
Fault Insertion




National Aeronautics and Space Administration

Microcontroller Extensions to the Simulation

Processor-in-the-Loop

— Smart nodes are simulated
on their own dedicated
microcontroller

— Microcontrollers run on their
own clock better illustrating
the asynchronous nature of
the control system

— No physical network or
network model implemented

Pseudo-HIL
— Brings a physical multidrop
network into the loop
— Simulation results may aid in
the development of a network
model

Engine
Model

Processor-
in-the-Loop
Simulation

Engine
Model

Pseudo-HIL
Simulation

(Memory
Sharing)
Control Control
User
System |« Interface System |«
Model Model
A A
Master Node
(Memory - (Memory
Sharing) [ - Sharing) b

User
Interface

RS485 Adapter

S | (Physical

Network)
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Simulation Benchmarking — Test Profile

« Each model described was simulated with the same flight profile
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Simulation Benchmarking — Model Outputs
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Real-Time Simulation with the DECSS

Switch

(Physical |
4 Network) g "
, Iff (Electrical ¥

1} Analog
| Signals) |

« DECSS hosts the control model (CM) In real-time simulations and perhaps

other models as well
— Each executable can have CPU, priority, and execution rate assigned

« SIMulation Workbench is used to setup, execute, and control the simulation as

well as collect data
— Real-time data analysis and plotting available
— Can export data for analysis using another program
13
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Real-Time Simulation with the DECSS
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Taking Advantage of Multiple Frequency Based Schedulers

« Hardware sampling rates are not considered in the current control model

— May operate asynchronously
— May operate at different rates larger than the control interval

 DECSS has two, 8-core processors, each having multi-threading
capabilities
« Each control element model becomes a process operating within the

domain of a frequency based scheduler

— 16 cores can be utilized to host the processes so that they emulate the
asynchronous nature of a physically distributed control system

— Processes do not need one common step-size (brute force) - run more efficiently
— Gives complete control over the simulation

« SlIMulation Workbench currently limits the user to using 1 frequency
based scheduler

— Efforts will be put toward resolving this issue
15
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Hardware-In-the-Loop Capability

« Hardware-in-the-loop capability opens up collaboration opportunities

« DECSS can/will provide all electrical analog signals and control network
communication interfaces to test hardware control elements.

* Plans are being made to use the DECSS functionality testing smart node
hardware (Sporian Microsystems SBIR)

« Once functionality is demonstrated:

— Studies can be conducted to
 evaluate different control architectures and control networks
« test control system hardware
« develop and test new control algorithms for distributed systems
— From these studies better models can be developed for the control system
components and the controller network

« Enable a faster and cheaper design process for smart nodes, control networks, and the
overall distributed control system

16
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Summary

« A structured methodology was followed to decompose the C-MAPSS40k
engine system simulation into functional elements

 Libraries of these functional elements have been developed to create
any engine system control architecture

« Several architectures have been created and validated against the
original baseline engine system simulation

* Preliminary work has been started to investigate the asynchronous
nature of distributed systems using microcontroller hardware

« These modeling techniques are now being applied to the DECSS which
employs real-time parallel processing to simulate the asynchronous and
multi-rate nature of distributed systems

17
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Questions/Discussion

jonathan.kratz@nasa.gov
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